Logistic回归
基于Logistic回归和Sigmoid的分类
Logistic回归分类器:
$$z=w^Tx$$
$$x=(x_0, x_1, …, x_n) \qquad (待分类数据)$$
$$w=(w_0, w_1, …, w_n) \qquad (最佳回归系数)$$
$$\sigma(z)=\frac{1}{1+e^{-z}} \qquad(Sigmoid 函数)$$
- 当$\sigma(z)>0.5$时,数据被归为1类
- 当$\sigma(z)<0.5$时,数据被归为0类
基于最优化方法的最佳回归系数的确定
函数$f(x,y)$的梯度表示为:
$$\nabla{f(x,y)}=\binom{\frac{\partial{f(x,y)}}{\partial{x}}}{\frac{\partial{f(x,y)}}{\partial{y}}}$$
梯度算法的迭代公式:
$$w:=w+\alpha\nabla_wf(w)$$
- $\alpha$ 移动步长
- $\nabla_wf(w)$ 移动方向